Decarbonisation strategy of the Port Authority of Valencia

Raúl Cascajo
Head of Environmental Policies

2th April 2022
Decarbonisation strategy of the Port Authority of Valencia

1. Valenciaport in figures
2. Need for extra power supply
3. Pillars for the descarbonisation of the port
 1. Renewable Energies
 2. Use of alternative/clean fuels
 3. Energy efficiency
 4. Digitalisation
4. Other projects
5. Conclusions
Decarbonisation strategy of the Port Authority of Valencia

1. Valenciaport in figures
2. Need for extra power supply
3. Pillars for the decarbonisation of the port
 1. Renewable Energies
 2. Use of alternative/clean fuels
 3. Energy efficiency
 4. Digitalisation
4. Other projects
5. Conclusions
Valenciaport in figures

The PAV runs 3 commercial ports in the Valencian Region

The Port Authority of Valencia (PAV) is a State owned public entity in charge of the management of 3 ports located along 80 kilometres of the eastern border of the Spanish Mediterranean coastline in the Valencian Region: namely, the ports of Sagunto, Valencia and Gandia.
Over 85 million MT handled in 2021...despite Covid 19

PAV CARGO THROUGHPUT - MILLION MT

Valenciaport in figures
Over 5.6 MTEU in 2021…despite Covid19

PAV CARGO THROUGHPUT - TEU

Valenciaport in figures
Valenciaport in figures

Carbon footprint calculation and monitoring

PAV-Port of Valencia Carbon footprint 2008-2019

Verified by Lloyds under ISO 14064 scheme

<table>
<thead>
<tr>
<th>Year</th>
<th>Kg CO2/tm - FE IVACE</th>
<th>Kg CO2/tm - FE IDAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>3.19</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>2.83</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>2.68</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>2.58</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>2.58</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>2.36</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>2.37</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cargo increase 2008-2016: 36%
CF indicator decrease 2008-2016: 30%

Cargo increase 2016-2019: 15%
CF indicator decrease 2008-2018: 37%
Decarbonisation strategy of the Port Authority of Valencia

1. Valenciaport in figures
2. Need for extra power supply
3. Pillars for the decarbonisation of the port
 1. Renewable Energies
 2. Use of alternative/clean fuels
 3. Energy efficiency
 4. Digitalisation
4. Other projects
5. Conclusions
Around 80 GWh consumed in 2020, (74 GWh Valencia only … and growing)

- Electrification
- Port enlargement
- New bunkering services (OPS)
Decarbonisation strategy of the Port Authority of Valencia

1. Valenciaport in figures
2. Need for extra power supply
3. Pillars for the descarbonisation of the port
 1. Renewable Energies
 2. Use of alternative/clean fuels
 3. Energy efficiency
 4. Digitalisation
4. Other projects
5. Conclusions
Decarbonisation strategy of the Port Authority of Valencia

1. Valenciaport in figures
2. Need for extra power supply
3. Pillars for the decarbonisation of the port
 1. Renewable Energies
 2. Use of alternative/clean fuels
 3. Energy efficiency
 4. Digitalisation
4. Other projects
5. Conclusions
PV facilities Port of Valencia

Data:
5,500 kWp rated power
AEP: ≈ 10 GWh/year
PV facilities Port of Valencia

Data:
1,400 kWp of rated power
AEP: ≈ 2.5 GWh/year
Puerto de Valencia wind farm

Minimum installed capacity of 15 MW
Number of wind turbines: min 3
AEP: 50 GWh/year
Decarbonisation strategy of the Port Authority of Valencia

1. Valenciaport in figures
2. Need for extra power supply
3. Pillars for the decarbonisation of the port
 1. Renewable Energies
 2. Use of alternative/clean fuels
 3. Energy efficiency
 4. Digitalisation
4. Other projects
5. Conclusions
Use of alternative/clean fuels

Use of alternative fuels

- LNG for Ro-Pax vessels
Use of alternative/clean fuels

- H2 for port machinery (H2PORTS Project)

General features:
- Total Budget: 4,117,197.5 EUR
- Duration (4 years): 2019-2023

First application of hydrogen technologies in port handling equipment in Europe
Coverage of 50% of ship calls in the Port of Valencia: In 2030, forecast: 14.5 MW - 23 MW
Decarbonisation strategy of the Port Authority of Valencia

1. Valenciaport in figures
2. Need for extra power supply
3. Pillars for the decarbonisation of the port
 1. Renewable Energies
 2. Use of alternative/clean fuels
 3. Energy efficiency
 4. Digitalisation
4. Other projects
5. Conclusions
Energy efficiency

- Substitution of port machinery and car fleets by hybrid and electric
- Enhancing the use of railway
- Electrification of port terminals
- Energy efficiency measures implementation
- Smart grids tools implementation
New Electrical Substation

- Electrical substation in the Port of Valencia for the future OPS

<table>
<thead>
<tr>
<th>CARACTERÍSTICAS GENERALES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema</td>
<td>Corriente Alterna Trifásica a 50 Hz</td>
</tr>
<tr>
<td>Tensión nominal (kV)</td>
<td>132</td>
</tr>
<tr>
<td>Categoría de la línea</td>
<td>Primera</td>
</tr>
<tr>
<td>Longitud total (m)</td>
<td>964</td>
</tr>
<tr>
<td>Nº de circuitos</td>
<td>2 (Doble circuito enterrado)</td>
</tr>
<tr>
<td>Origen</td>
<td>ST La Punta</td>
</tr>
<tr>
<td>Final</td>
<td>ST APV</td>
</tr>
<tr>
<td>Tipología de la línea</td>
<td>Subterránea</td>
</tr>
<tr>
<td>Potencia máxima admisibles (MVA x circuito)</td>
<td>755 A en 132 kV (171.41 MVA)</td>
</tr>
<tr>
<td>Potencia requerida (MVA x circuito)</td>
<td>30</td>
</tr>
<tr>
<td>Tipo de cable</td>
<td>HEPHZI-1200 mm² H172 132 kV</td>
</tr>
<tr>
<td>Tipo de canalización</td>
<td>Zanja entubada hormigonada</td>
</tr>
<tr>
<td>Categoría de la red</td>
<td>A</td>
</tr>
</tbody>
</table>
Decarbonisation strategy of the Port Authority of Valencia

1. Valenciaport in figures
2. Need for extra power supply
3. Pillars for the descarbonisation of the port
 1. Renewable Energies
 2. Use of alternative/clean fuels
 3. Energy efficiency
 4. Digitalisation
4. Other projects
5. Conclusions
Digitised energy management, self-consumption, electric mobility and storage
Decarbonisation strategy of the Port Authority of Valencia

1. Valenciaport in figures
2. Need for extra power supply
3. Pillars for the decarbonisation of the port
 1. Renewable Energies
 2. Use of alternative/clean fuels
 3. Energy efficiency
 4. Digitalisation
4. Other projects
5. Conclusions
About 500 m length of breakwater for wave energy converters

Wave energy:
Requirements for port deployment:

✓ Harmless to infrastructure
✓ Easy to fold in case of extreme weather events
✓ Fully accessible
✓ Low O+M costs
✓ Scalable

We have identified so far, at least three options for further research (all based on WAB technology)
Other Projects

Option 1

Martillo Marina

Dique exterior
Option 2
Option 3
Decarbonisation strategy of the Port Authority of Valencia

1. Valenciaport in figures
2. Need for extra power supply
3. Pillars for the decarbonisation of the port
 1. Renewable Energies
 2. Use of alternative/clean fuels
 3. Energy efficiency
 4. Digitalisation
4. Other projects
5. Conclusions
Summary of projects to decarbonise the port of Valencia

- Wind Power Plant - 2024
- New Container Terminal ∞ 2027
- PV Plant 6 MWp - 2022
- New Passenger Terminal - 2023
- PV Plant 1.5 MWp - 2021
- New Electric Substation - 2024
Thank you very much for your attention!!!!

Raúl Cascajo
Rcascajo.externo@valenciaport.com